

Sample Question Paper

CLASS: XII

Session: 2021-22

Mathematics (Code-041)

Term - 1

Time Allowed: 90 minutes Maximum Marks: 40

General Instructions:

- 1. This question paper contains **three sections A, B and C**. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. There is no negative marking.
- 6. All questions carry equal marks.

SECTION - A

In this section, attempt any 16 questions out of Questions 1 – 20. Each Question is of 1 mark weightage.

	1.	$\sin\left[\frac{\pi}{3}-\sin^{-1}\left(-\frac{1}{2}\right)\right]$ is equal to:	
		a) $\frac{1}{2}$ b) $\frac{1}{3}$ + $(Sin_1)^2$	-1
		$\frac{7}{2}$ $\frac{7}{3}$ $\frac{7}$	'
	2.	The value of k (k < 0) for which the function f defined as	
	Cinn	$\left(\frac{1-\cos kx}{\cos kx}, x \neq 0\right)$ lim $1-\cos kx$	
lir	م الم	$f(x) = \begin{cases} x \sin x & \text{if } x = 0 \end{cases}$	
21-7	o A	$\frac{1}{2} \int_{0}^{2} \frac{1}{12} \int_{$	١ ،
	=	is continuous at $x = 0$ is. $\lim_{x \to \infty} \frac{2}{x^2} = \frac{1}{x^2} = \frac$	_ = _
	·	$f(x) = \begin{cases} \frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2}, & x = 0 \end{cases}$ is continuous at $x = 0$ is: $\lim_{n \to \infty} \frac{1 - \cos kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin x} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin^2 kx} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin^2 kx} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin^2 kx} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin^2 kx} = \frac{1}{2}$ $\lim_{n \to \infty} \frac{2 \sin^2 kx}{n \sin^2 kx} = \frac{1}{2}$	7 2
		c) $\pm \frac{1}{2}$ d) $\frac{1}{2}$	
	3.	(1 when i + i)	
911 9	127		
911 G	2.1	A ² is:	
121	120	, [1 0]	
S	1750	$\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \qquad \qquad \boxed{ b) \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} }$	
1	0 1/1		
-2 1	1 0+	$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
rot	•		
ot	4.174	Value of k , for which $A = \begin{bmatrix} k & 8 \\ 4 & 2k \end{bmatrix}$ is a singular matrix is:	
		(H - O)	
		a) 4 b) -4 mcxh	1X
		d) 0 Singular	
		- / KV8 1 2	
		- 2K - 32 = 0	_
		$ 4/3k $ $ 3k^{2}-32-6 $ $ 4/3k $ $ 3k^{2}-32-k^{2}=16 $ $ 4=\pm 4 $)
		1 2k - 3 - 1	

	26.	The real function $f(x) = 2x^3 - 3x^2 - 36x + 7$ is: $6\eta^2 - 6\eta - 36 = 36$	O		
	27.	a) Strictly increasing in $(-\infty, -2)$ and strictly decreasing in $(-2, \infty)$ b) Strictly decreasing in $(-2, 3)$ $n - 3n + 2n - 6$ c) Strictly decreasing in $(-\infty, 3)$ and strictly increasing in $(3, \infty)$ $n - 3n + 2n - 6$ d) Strictly decreasing in $(-\infty, -2) \cup (3, \infty)$ $n + 2 \cup (n - 3)$ d) Strictly decreasing in $(-\infty, -2) \cup (3, \infty)$ $n + 2 \cup (n - 3)$ $n = -2$ $n = -2$ Simplest form of $\tan^{-1}\left(\frac{\sqrt{1+\cos x} + \sqrt{1-\cos x}}{\sqrt{1+\cos x} - \sqrt{1-\cos x}}\right)$, $\pi < x < \frac{3\pi}{2}$ is:			
		c) $-\frac{x}{2}$ d) $\pi - \frac{x}{2}$			
_					
6	28.	Given that A is a non-singular matrix of order 3 such that $A^2 = 2A$, then value of $ 2A $ is:	1		
	10	a) 4 b) 8			
α	300	(a) 64 (b) 16			
7	2473				
-	29.	The value of b for which the function $f(x) = x + cosx + b$ is strictly decreasing over R is:			
		a) $b < 1$ b) No value of b exists			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
-	30.	30. Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$, then:			
	00.	a) $(2,4) \in \mathbb{R}$ b) $(3,8) \in \mathbb{R}$			
		c) (6,8) ∈ R d) (8,7) ∈ R			
	31.	(x, x < 0)	1		
	01.	The point(s), at which the function f given by $f(x) = \begin{cases} \frac{x}{ x }, & x < 0 \\ -1, & x \ge 0 \end{cases}$ is continuous, is/are:			
		a) $x \in \mathbb{R}$ b) $x = 0$ c) $x \in \mathbb{R} - \{0\}$ d) $x = -1$ and $x \in \mathbb{R} - \{0\}$			
		c) $x \in \mathbb{R} - \{0\}$ d) $x = -1$ and 1			
	32.	If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the values of k , a and b respectively are:	1		

	a) -6, -12, -18	b) -6, -4, -9	
	c) -6, 4, 9	d) -6,12,18	
33.	A linear programming problem is as follows:	lows:	1
	Minimize Z = 30x + 50y		
	subject to the constraints,		
	$3x + 5y \ge 15$		
	$2x + 3y \le 18$		
	$x \ge 0, y \ge 0$		
	In the feasible region, the minimum val	ue of Z occurs at	
	a) a unique point b)	no point	
	c) infinitely many points d)	two points only	
34.	The area of a trapezium is defined by for	unction f and given by $f(x) = (10 +$	1
01.	$(x)\sqrt{100-x^2}$, then the area when it is m		•
	$x/\sqrt{100-x^2}$, then the area when it is in	iaximised is.	
	a) 75 <i>cm</i> ²	b) $7\sqrt{3}cm^2$	
	c) $75\sqrt{3}cm^2$	b) $7\sqrt{3}cm^2$ d) $5cm^2$	
	<i>c)</i> 73 y 3 cm	d) Sent	
35.	If A is square matrix such that $A^2 = A$, the square matrix such that $A^2 = A$, the square $A^2 = A$ is the square $A^2 = A$.	hen (I + A) ³ – 7 A is equal to:	1
	a) A	b) I + A	
200	c) I – A	d) I	4
36.	If $tan^{-1} x = y$, then:		1
	a) -1 < y < 1	b) $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$	
	c) $\frac{-\pi}{2} < y < \frac{\pi}{2}$	d) y $\epsilon\{\frac{-\pi}{2}, \frac{\pi}{2}\}$	
	c) 2 \ y \ 2	α, y ε _{ξ 2} , ₂ }	
37.	Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let	$f = \{(1, 4), (2, 5), (3, 6)\}$ be a function	1
	from A to B. Based on the given information	ation, f is best defined as:	
	a) Surjective function	b) Injective function	
00	c) Bijective function	d) function	4
38.	For A = $\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then 14A ⁻¹ is given by	<i>'</i> :	1
	- 1 23		
	a) $14\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$	b) $\begin{bmatrix} 4 & -2 \\ 2 & 6 \end{bmatrix}$	
	a) 14 [1 3]	b) [2 6]	
	r2 _11	r_2 _11	
	c) $2\begin{bmatrix} 2 & -1 \\ 1 & -3 \end{bmatrix}$	d) $2\begin{bmatrix} -3 & -1 \\ 1 & -2 \end{bmatrix}$	
	-1 5-	- 1 2-	
39.	The point(s) on the curve $y = x^3 - 11x$	+ 5 at which the tangent is $y = x - 11$	1
	is/are:		
	a) (240)	(2 0)	
	a) (-2,19) b)	(2, -9) (2, 10) and (2, 0)	
40.	$\begin{array}{c ccccc} & c) & (\pm 2, 19) & & & d) \\ \hline & & [\alpha & \beta \] & & & \end{array}$	(-2, 19) and (2, -9)	1
+∪.	Given that $A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ and $A^2 = 3I$, the	en:	ı
	r,		
J.		l l	J.

	a) $1 + \alpha^2 + \beta \gamma = 0$ c) $3 - \alpha^2 - \beta \gamma = 0$	b) $1 - \alpha^2 - \beta \gamma = 0$ d) $3 + \alpha^2 + \beta \gamma = 0$	
	SE In this section, Each question	ECTION – C , attempt any 8 questions. n is of 1-mark weightage. are based on a Case-Study.	
41.	For an objective function $Z = ax + by$, where $a, b > 0$; the corner points of the feasible region determined by a set of constraints (linear inequalities) a $(0, 20)$, $(10, 10)$, $(30, 30)$ and $(0, 40)$. The condition on a and b such that the maximum Z occurs at both the points $(30, 30)$ and $(0, 40)$ is:		
	a) $b - 3a = 0$ c) $a + 2b = 0$	b) $a = 3b$ d) $2a - b = 0$	
42.	a) $\frac{1}{2}$ b	y = mx + 1 a tangent to the curve y ² = 4x? 1 1) 1 1) 3	
43.	The maximum value of $[x(x-1)]$ a) 0 b c) 1 d	$\frac{1}{2}$	
44.	In a linear programming problem and y are $x - 3y \ge 0, y \ge 0, 0 \le x$ a) is not in the first quadrant c) is unbounded in the first quadrant	the constraints on the decision variables x x ≤ 3. The feasible region b) is bounded in the first quadrant d) does not exist	
45.	Let $A = \begin{bmatrix} 1 & \sin\alpha & 1 \\ -\sin\alpha & 1 & \sin\alpha \\ -1 & -\sin\alpha & 1 \end{bmatrix}$, where $A = \begin{bmatrix} 1 & \sin\alpha & 1 \\ -\sin\alpha & 1 & \sin\alpha \\ -1 & -\sin\alpha & 1 \end{bmatrix}$	where $0 \le \alpha \le 2\pi$, then: $\begin{array}{c c} b & A \ \epsilon(2, \infty) \end{array}$	
	c) $ A \epsilon(2,4)$	d) $ A \in [2,4]$ CASE STUDY	
	MARA	The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at speed 16 km per hour and the fixed charges to run the train amount to ₹	
	Assume the speed of the train as	1200 per hour.	

Assume the speed of the train as $v \, \mathrm{km/h.}$

	.	answer the following questions.	
46.	Given that the fuel cost per hour generates in km/h, the value of k	is k times the square of the speed the train α is:	1
	a) $\frac{16}{3}$	b) 1/2	
	a) $\frac{16}{3}$ c) 3	b) $\frac{1}{3}$ d) $\frac{3}{16}$	
47.	If the train has travelled a distant the train is given by function:	ce of 500km, then the total cost of running	1
	a) $\frac{15}{16}v + \frac{6000000}{v}$	b) $\frac{375}{4}v + \frac{600000}{v}$	
	$c) \ \frac{5}{16}v^2 + \frac{150000}{v}$	d) $\frac{3}{16}v + \frac{6000}{v}$	
48.	The most economical speed to run the train is:		
	a) 18km/h	b) 5km/h	
	c) 80km/h	d) 40km/h	
49.	The fuel cost for the train to trave	el 500km at the most economical speed is:	1
	a) ₹3750	b) ₹750	
	c) ₹7500	d) ₹75000	
50.	The total cost of the train to travel 500km at the most economical speed is:		1
	a) ₹3750	b) ₹75000	
	c) ₹7500	d) ₹15000	
